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Can bethanechol distinguish between different muscarinic

signalling pathways in neurones?
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The reversible modulation of certain types of voltage-
dependent Ca®* currents in peripheral and central neurones
by activation of muscarinic (acetylcholine) and other various
G-protein coupled receptors has been known for some
considerable time (Wanke et al., 1987; Carbone & Swandulla,
1989; Toselli & Lux, 1989). However, the signal transduction
pathways that link such receptor activation to the modulation
of Ca®* channels still remain rather elusive. Since intracellular
Ca’" is involved in such a multitude of important neuronal
functions, that is, neurotransmitter release, control of calcium-
dependent enzymes, neuronal development (Linden, 1994), as
well as influencing the expression (e.g. Ginty, 1997; Kobayashi
et al., 2002), and properties of other voltage-sensitive and
ligand-gated ion channels involved in controlling membrane
excitability, it is quite understandable why so much interest has
been devoted over the years, to the elucidation and under-
standing of such receptor-regulated G-protein signalling
pathways, and also, the molecular mechanisms by which
Ca?" channel modulation actually occurs. The quest is made
even more interesting in the light of recent data showing that
Ca’* current modulation by neurotransmitters may show
different characteristics in different neuronal compartments
(e.g. dendrites; Delmas er al., 2000), suggesting a specialized
function of Ca’" signalling in important processes such as
synaptic integration and long-term synaptic plasticity (for
reviews, see Magee et al., 1998; Weiss & Burgoyne, 2002).
The adult rat superior cervical ganglion (SCG) neurone has
proved a robust and convenient model system for studying
signalling cascades linked to Ca®" current (Ic,) inhibition.
Based on such experiments, it is now clear that concentration-
dependent, muscarinic suppression of Ca?* channel activity in
these cells (mainly N- and L-type; Mathie et al., 1992) occurs
by both rapid- and slow-onset processes; the former (N-type) is
sensitive to pertussis toxin (PTX) and acts through a voltage-
dependent, membrane-delimited pathway linked to muscarinic
M,/M, receptors (via a GoA-type G protein), whereas the
latter (N- and L-type) is PTX-insensitive, voltage-independent
and utilizes an unknown diffusible cytoplasmic second
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messenger (not Ca®*, cAMP, cGMP, or protein kinase C)
linked to M, receptors (via a Ga, G protein) (Bernheim et al.,
1991, 1992; Hille, 1994; Hille et al., 1995; Delmas et al., 1998).
The cytoplasmic messenger nevertheless, appears to be partly
Ca’*-dependent and partly sensitive to the internal divalent
cation chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tet-
raacetic acid (BAPTA; in whole-cell patch experiments), since
a low (0.1 mMm) BAPTA, concentration in the recording pipette
is necessary to see the response (Beech ez al., 1991; Mathie
et al., 1992). A fast PTX-insensitive pathway may also be
present in adult ganglia (Beech et al., 1992), possibly coupled
to a Gaz-type G protein subunit (Jeong & Ikeda, 1998; see also
Delmas et al., 1998). The ‘fast” PTX-sensitive pathway exhibits
two further characteristic properties: voltage-dependence —
manifested as a temporary relief of muscarinic I, blockade
following a positive conditioning prepulse (cf. Elmslie et al.,
1990; Williams et al., 1998), and possibly mediated by a G-
protein-dependent blocking particle (Lopez & Brown, 1991),
and ‘kinetic slowing’, seen as a significant slowing of I,
activation kinetics and positive shift in voltage dependence of
Ca®* channels most likely because of the direct binding of
‘free’ G-protein fy subunits to the N-type Ca>" channels (the
‘willing-reluctant’ model: Tkeda & Dunlap, 1999; Colecraft
et al., 2000).

Faced with such an extensive collection of existing data, can
anything new be added to the already complex muscarinic I,
modulation story? To date, the two muscarinic signalling
pathways in ganglia have been pharmacologically distin-
guished using established muscarinic receptor antagonists
(Bernheim et al., 1992) or by utilizing a muscarinic M;—M,
knockout approach in mice (Shapiro et al., 2001). In this issue
of the journal, Liu & Rittenhouse (2003) present some new
data showing that a clean discrimination between the
signalling cascades can be made by using the conventional
muscarinic agonist bethanechol (BeCh). The principal aim of
their experiments was to establish whether the fast and slow
muscarinic transduction mechanisms originally observed in
adult SCG were present in neonatal SCG cells; using neonates
allowed a better separation of the two signalling pathways,
since the fast (membrane-delimited) PTX-insensitive com-
ponent was absent in these cells (cf. Beech er al., 1992).
Whole-cell and cell-attached single channel recordings of
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N-and L-type Ca®>" currents were made under patch clamp
from acutely dissociated neurones, using a protocol designed
to optimize L-currents (addition of dihydropyridine L-type
channel agonists to the bathing solution, and Ba®>* as charge
carrier); also by raising or lowering the internal BAPTA
concentration in their patch pipettes or pretreating cells with
PTX, they could effectively isolate the slow diffusible second
messenger pathway from the fast pathway in any given
experiment. Under these conditions, the muscarinic agonist
oxotremorine-M (OXO-M; 0.01-100 um) was able to suppress
both N- and L-type currents indiscriminately by activating
either signalling pathway, thereby confirming their existence in
the neonate. In contrast, BeCh (up to 3mm) was unable to
activate the slow (voltage-independent) pathway, but appeared
selective for the fast membrane-delimited pathway. This was
elegantly demonstrated in PTX-pretreated cells, whereupon
the effects of BeCh (but not OXO-M) on N- and L-type
currents were eliminated. Interestingly, despite high concen-
trations of either agonist, the maximal degree of current
inhibition by the fast pathway was never greater than 60%,
most likely reflecting some basal constitutive G-protein
activity. In their concluding series of experiments, the authors
showed that the effect of BeCh was not mediated via M, or M4
muscarinic receptors (cf. adult SCG), since it was unaffected
by the specific M; toxin MT-7 (Adem & Karlsson, 1997) or by
pirenzepine (acting here as an M, antagonist in the presence of
MT-7), respectively, but was blocked by the M, antagonist
methoctramine; the current inhibition by OXO-M, acting via
the slow pathway, was however, abolished by MT-7, confirm-
ing it was M, mediated (as in the adult).

BeCh, a f-methyl analogue of carbachol, was first synthe-
sized and investigated in the 1930s (Heller Brown & Taylor,
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